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MATHEMATICAL MODEL AND ALGORITHMS FOR AN ELECTRONIC COMPUTER 

ANALYSIS OF THE HEAT AND MASS TRANSFER IN FREEZING THE SOIL 

A. R. Pavlov and P. P. Permyakov UDC 536.24 

An analysis is performed of the selection of a mathematical model of the heat and 
mass transfer in freezing the soil, and an economical algorithm of its computa- 
tion on an electronic computer is constructed. 

Mathematical models of the heat and mass transfer during freezing disperse media can be 
separated into two groups [i]: in the first are models with a generalized Stefan-type condi- 
tion on the moving interface of the thawed and frozen zones, while models without extraction 
of the freezing front with phase transitions in the whole volume are in the second. 

The following assumption is ordinarily made in constructing the mathematical model of 
the first group: combined heat and mass transfer occurs in the thawed zone, while only heat 
transfer occurs in the frozen zone. Accordingly, the following system of equations [2] is 
used for the mathematical description of the freezing process: 

0T 
c T --  div (~T grad T), (1)  

Ot 

0~1 - -  div (k grad ~0 ,  (2)  
Ot 
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OT 
c F ~ = d i v ( ; ~ F g r a d  T ) .  (3) 

Ot 

The second group of mathematical models of the freezing process is represented by a known 
system of heat- and mass-transfer equations of Lykov [3], which reduces for the case of capil- 

lary-porous bodies to the system of eq,uations [4]: 

0T 
c - -  div (Z grad T) + 8L?0 0~176 , 

at at (4 )  

&% -- div (k grad %). (5) 
at, 

In this case the phase transformations are characterized by the parameter c, the phase trans- 
formation criterion which is determined experimentally. 

Application of the models mentioned in numerical investigations of freezing is fraught 

with definite difficulties related , particularly, to the necessity to give boundary condi- 
tions on the freezing front for the first model, and values of the criterion c for the second. 
In this connection, papers [5, 6] have recently appeared in which modifications of the system 
(4) and (5) are used which do not contain the criterion c. Thus, the following system of 
equations is used in [5]: 

o ( i c = L ~ LP2 - - ,  at ax ax ] at (6) 

a e a ( D  ae.) ~_ O(D (7) 
al 8x 8x Pl at ' 

which describe heat and moisture transfer, respectively, with the phase transformation of 
water into ice taken into account. 

A numerical investigation of the temperature and moisture fields around a borehole in 
permanently frozen mountain rock is performed in [6] on the basis of solving the following 
system of equations 

0T 0 
c at - div(L (T) g radT)  + L?0 - - f f ~ ( i ( T ) % ) ,  (8)  

&% = div [k ((0o, T) grad (1 - -  i (T)) %]. (9)  
0t 

I t  i s  e a s y  t o  n o t e  t h a t  s y s t e m s  ( 6 ) - ( 7 )  and ( 8 ) - ( 9 )  a r e  e q u i v a l e n t ;  t h e i r  s o l e  d i f f e r e n c e  
i s  t h a t  t h e  f i r s t  s y s t e m  i s  w r i t t e n  f o r  t h e  o n e - d i m e n s i o n a l  c a s e  and a vo lume  c o n t e n t  o f  m o i s -  
t u r e  w h i l e  t h e  m o i s t u r e  c o n t e n t  f i g u r e s  i n  t h e  s e c o n d .  They  can  be  r e p r e s e n t e d  i n  t h e  f o r m  

aT a (L aT ) &o$ t 
c ef at = a ~  ~ + L v ~  - -  at (lO) 

aooo _ o { k 0(oi ) ( i i )  
at Ox ~, 8x 7" 

where Cef = [Co + ci~ H + c2(wo -- ~H) + Ld~H/dT]yo; COo = ~ + ~2 is the total moisture content. 

Two algorithms for the numerical solution of system (i0) and (ii) are considered below, 
which correspond to two different representations of (ii): the first algorithm is when (Ii) 
is replaced by the equation 

at - -6-f- ~ --67- ' (12 ) 

and the second corresponds to the case when its equivalent equation from [6] is taken in 
place of (ii): 

a~o a [k a ] (13) 
at ax ~ (i - i (r)) ~Oo . 

#The term with the asterisk acts only in the phase transition zone. 
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Equation (12) in the thawed zone agrees with (ii) and expresses the change in moisture 

content in the liquid phase while it does not agree with it in the frozen zone and, therefore, 

describes the distribution of a certain fictitious moisture content. Starting from this, the 
algorithm for the numerical determination of the moisture field is developed so that this 

fictitious moisture content is first determined and then the moisture content in the liquid 
and solid phases is determined by using it and the known function ~H" 

The algorithm is constructed under the following initial and boundary conditions, al- 
though it can be considered under even more general conditions 

OT 

Ox 
- - a ( T - - T c ) ,  x = 0 ,  t > 0 ,  

OT 
~, . . . .  O, x = l ,  t > O ,  

Ox 

T ( x ,  0 ) =  T~ O ~ x ~ l ,  t = O ,  

(14) 

(15) 

(16) 

k 0% ~=o = k .  &~176 I = O, 
Ox Ox l:,=l 

O-J  x ~ l ,  t = O. O~o (x, O) = o~ ~ (x), ..~ 

Taking account of the replacement of (ii) by Eqs. 
(18) is approximated on the difference mesh g = {(xi, 

/ 

lj-~ ~Tj } by the following difference problem 
k=l 

Cef~ i (Tu-- T~j_1)/~i = [~+0 5j (T~+Ii -- Tu) -- ~i-o ~i (Tij -- T~_1)]/h~ + 

+ L ~ o ( % , ~ i - - O ) o , ~ i _ ~ ) / ~  i, i =  1, 2, . . .  , H - - ! ;  ]---= 1, 2, . . .  , 

Cef, O/ (Tog --- Toi_l)l, U = 2~,o,5i  (Tlj - -  Toj)/h z + 2cz (T c - -  Toj)/h -~- Lyo (r o ,oi - -  (~ 

Cef, Nj (T,w - -  Txi--1)/'~J = -- 2X,v-o ,sj (T~j  - -  T N _ l ) / h z +  L?o (co o .vi -- C~ ,Ni--,)/~J' 

T~o = T~, i = O, 1, . �9 �9 , N,  

(Wu  - -  W~j_~)I'~j = [k~+ o,~j (~l~+~j - -  ~ h O - -  k~-o.sj  (~*~ - -  % - 1 )  ]/h~' 

i =  1, 2, . . .  , N - - l ;  ] = 1 ,  2, . . .  , 

(Wos -- Wo~_~)l'rs = 2ko .~j (q~ -- qo~)l h~, 

(Win ~ m - ~ ) l ~ s  = - -  2~N-o ,~ i  (qNj %v--~')/'~'L 

Wio = 09 i -= O, 1, N,  

where W = ~, n = ~ for the first algorithm, and W = ~o, ~ = ~o(i -- i(T)) 

the coefficients %, k, Cef are calculated from the following formulas 

X~_+o.5 i = ~ (x~_+o .~ , t:, 0.5 ( T ~  + T~• 0.5 (~o o ,~  + o~ o,~+_~,,)), 

k~+o.~ ~ = k(x~+_o. ~ , t:, 0 . 5 ( T ~  + T~+~),  0 ,5 (Oo ,~  + ~oo,~• 

Cef,u ----- [Co -~- Clt~ -~, Cz (~ ,*n - -  r + L (dO~H/dT)~n] To. 

(17) 

(18) 

(12) or (13), problem (i0), (ii), (14)- 
tj), x i = ih, i = 0, 1 ..... N; Nh = Z, 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

for the second, while 

The derivative of the function ~H(T) is calculated by starting from its analytical expression. 

We used the expression presented in [7] in this paper. 

The subscript n in the formulas for the coefficients Cef, %, K takes on the values n = 
j -- i, j. For n = j -- i the difference scheme (19)-(26) is a linear algebraic system whose 

solution is found by the factorization method, while a nonlinear system is obtained for n = 
j, for whose solution an iterative scheme is used. This scheme is written exactly the same 
as the system (19)-(26) except that their iterations must be taken in place of the unknowns 

Tij, ~ij, ~o,ij, while the coefficients Cef, %, K are taken in the previous iteration. 

FIRST ALGORITHM 

Let values of the functions Tik, ~o,ik, ~2,ik be known for all k = 0, i, ..., j -- i. To 
find them in the next time layer t = tj an iteration scheme is used. By means of the known 
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TABLE I. Temperature Distribution T, Total Moisture wo and Ice 

~2 over Depth of a Specimen of Sand Type for t = 50 h 

0,00 

--10,17 
18,64 
17,64 

--10,24 
17,99 
16,99 

--10,20 
18,35 
17,35 

I T 
f~o 
~o 2 

II T 
o]o 
o) 2 

III T 
(0 o 
(02 

IV T 

032 

s+ l  S S 

--10,25 
17,99 
16,99 

0,08 

--6,25 
I7,08 
16,01 

--6,35 
17,23 
16,17 

--6,3t 
17,10 
16,05 

--6,37 
17,08 
16,02 

0 , 1 6  

--2,39 
17,00 
14,83 

--2,47 
16,94 
14,82 

--2,44 
16,94. 
14,80 

--2,48 
16,89 
14,78 

0 , 2 4  

0,65 t2625 
0,58 2,54 12615 13671 
0,59 2,55 

12d09 t3,650 

0 ,582 ,54  
12~1 13,670 

J I Counting 
0 , 3 2  0 , 4 0  0 , 4 8  0 , 5 6  time, see 

2,59 4,2615,65 6,77 

1 14668 14685 13675 14637 2639 

4,20 5,59 6,73 
14,36 14,67 114,84 2080 

0 0 t 0 
/ 4,22 5,61 14~65 ' 6'74L 14,320 ]ii4082 

4,21 5,606,741 
t4,330 14665 14082 i 

1572 

1438 

s+l 
Tij , ~o,ij, the ~ij is found from system (23)-(26), and then Tij from system (19)-(22). To 

s+l s+l s+l 
find ~o , the ~1,ij, m2,ij are determined separately. Since the function ~1,ij agrees with 
~ij in the thawed zone, but it is calculated in terms of a known function of the quantity of 
unfrozen water in the frozen zone, its s + 1 iteration is found in the whole domain of the 

solution from the relation 

s ~  sg-I 
s + l  mi] , T i j  > / O ,  
el  , i f  ~ s+l s + I  

~ ,  Tu<O.  

s+ l  
Then the  s + 1 i t e r a t i o n  of  the  q u a n t i t y  m2 , i j  i s  c a l c u l a t e d  as the  sum of  t h e  i c e  e x i s t i n g  
at the preceding time ~2,ij-~ and that newly formed because of the phase transformations 

s + l  s~l_ s + l  

02, i /  ~ ~2,ij--I @ ~ i J - -  ~ I , i j . ~  

and from this latter stage we determine 

s + I  s+l s+l 
Oo = ~ l , i / @  ~2,i]" 

SECOND ALGORITHM 

Let the values of the functions Tik, ~o,ik be known for all k = 0, i, ..., j -- i. Their 
determination on the time layer t = tj is performed by the same iteration scheme as for the 
case of the first algorithm. The difference is just that the iciness i(T) must be calculated 
in each iteration, i.e., the algorithm reduces to the following operations: From the known 

S S S 

Tij, mo,ij, i(Tij) the s + 1 iteration of the quantities Tij, ~o,ij are determined from the 

s+l 
iteration scheme. Then i(Tij) is calculated by using the known iciness function, and in the 
last stage we determine 

s@l s+l s+l s@l s + I  s + l  

~2,i/ = i ( T )  ~o,i/, ~i,t/ = ~o,i / - -  m2,~i" 

Therefore, each of the algorithms permits finding the temperature distribution, the 
total moisture, and the moisture in the liquid and solid phases at any time. 

Numerical computations were performed by means of the algorithms described under the 
following data 

co---- 11801/14g.deg, 7o---- 1560kg/m3, L= '334" I03  J/kg, 

)~(T, % ) =  1,16[~F%-()~ , -  ZF) ~%-(r)--msand](w/m'deg), 
(% - -  a)sand J 

k (T, %) = kl (T) exp (k2oh -- ks%) (mX/sec), 
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co . /  T 7" 
/ a \  , 4  ~--------~- D ~ ' - ~ -  9 

/ / ~ /  / J F 

__:~. [ 
I 

0 O/ 42 

Fig .  1. Temperature d i s t r i b u t i o n  ( s o l i d  l i n e ) ,  t o t a l  
mo is tu re  content  (dashes),  and q u a n t i t y  of un f rozen 
water (daslr-dot line) over specimen length at dif- 
ferent times (t, h): i) t = 2; 2) 24; 3) 72. 

%T,F=  m (0 .0017o@0,1~  o - -  1 . 1 ) - -  0,1~o, 

m ,  : 1,5; m~ = 1.7; k l ( T  ) = 1 ,4 .10-8(1  @ 0.04T),  

k 2 = 0,172,  m s a n d =  1%,  1--2,0m, h = 0,08, T = 180, 

k3 = 0 . 2 3 , ~  := 23,2 W / m  2 . deg . .  

Results of numerical computations are presented in the table: rows II, IV (I, III) cor- 
respond to computations by the first (second) algorithm, rows I, II (III, IV) by an implicit 
iteration (explicit) difference scheme. 

Comparison of the corresponding values of the quantities T, ~o, ~2 computed by the two 
algorithms shows that the maximum discrepancy in the values of the temperature does not exceed 
0.1~ and 0.7% for the moisture. From a comparison of the machine time expenditure, it fol- 
lows that the second algorithm requires =27% more time for the implicit scheme and 10% for 
the explicit scheme than for the first. 

Therefore, it is expedient to use the first algorithm in practice, as being more econom- 
ical. It should be expected that this advantage of the first algorithm will be still greater 
in solving multidimensional problems. 

Results of a numerical computation by the first algorithm are presented in the figure 
for a specimen of length I = 0.3mwith the initial temperature T ~ = 4.2~ and with a boundary 
condition of the first kind for x = l: T(~, t) = 4.2~ The data in the figure display the 
dynamics of a moisture change during freezing. It follows first from the figure that the 
moisture on the freezing front does not remain constant as is assumed when using the mathe- 

matical model of the first group, but decreases continuously as the freezing boundary moves 
into the bulk of the specimen. 

Computations confirm the regularity established experimentally in the moisture distribu- 
tion during freezing [8, 9]; an increase in moisture occurs within the whole freezing zone, 
and a diminution in the thawed zone; near the interface of the two zones a layer with the 
least moisture is observed. 

NOTATION 

x, spatial coordinate; t, time; T, temperature; c, CT, CF, volume specific heats of the 
soil, the thawed and the frozen soil; Co, ci, c2, specific heats of the mineral skeleton, the 
water, and the ice; XT, %F, heat-conduction coefficients of the thawed and frozen soil; k(D), 
diffusion coefficient (moisture production); 01, 02, water and ice densities; yo, volume 
density of the skeleton; ~, ~, volume content of the water and ice; ~o, ~i, ~2, total moisture 
content, the moisture content in t~e liquid and solid phases; i(T), iciness; L, latent heat of 
melting of the ice; WH(T), function of the quantity of unfrozen water at the temperature T; 
a, heat elimination coefficient, Tc, temperature of the medium; T~ initial temperature 
(moisture content); ~, specimen length; and h, Tj, difference mesh spacings along the axes x 
and t. 
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